Statistical Models
Spring 2009
Instructor: 田茂再 (Email: mztian(at)ruc.edu.cn)
Office Hours: by appointment
Lectures: Friday, 2:00-5:00 p.m., 0308 Mingde Main Building
Teaching Assistant: 程晓月 (Email: chengxy(at)ruc.edu.cn)
Text Book:
- Part 1 —- Linear Models Searle, S. R. Linear Models
Searle, S. R. Matrix Algebra Useful for Statistics
Seber G. A. F. Linear Regression Analysis
Graybill, F. A. The Theory and Applications of the Linear Model
- Part 2 —- Nonparametric & Semiparametric Models Wolfgang Hardle, et al. Nonparametric and Semiparametric Models
Wolfgang Hardle. Smoothing Techniques with Implementation in S
Outline:
Mar. 27
- Matrix Algebra
- General Linear Model
Apr. 3
- The Weighted Least Square Estimation
- The Best Linear Unbiased Estimator (b.l.u.e.)
- MLE
- Partitioning Total Sum of Squares
Apr. 10
- Introduction to Nonparametric & Semiparametric Models
- Histogram
Apr. 17
- Average Shifted Histogram
- Kernel Density Estimation (properties, parameter selection, kernel choosing, multivariate situation)
May 8
- Nonparametric Regression
- Multivariate Kernel Density Estimation
- Local Polynomial Regression
- k – Nearest Neighbor Estimation
May 15
- Dimension Reduction (Variable Selection in Nonparametric Regression, Nonparametric Link Function, Semi- or Nonparametric Index)
- Generalized Linear Model (Exponential Family, Link Function)
May 22
- Single Index Model
- Estimation (Semi-parametric Least Square, Pseudo Likelihood Estimation, Weighted Average Derivative Estimation)
May 31
- Partial Linear Model
- Generalized Partial Linear Model
- Estimation Algorithm for PLM & GPLM
June 5
- Profile likelihood
- Testing the GPLM (LRT, Modified LRT)
June 12
- Additive Models
- Generalized Additive Models
Homework:
Mar. 27
ex1_05.pdf
—-deadline: Apr.10
ex2_05.pdf; ex3_05.pdf; exercise in class($E(\epsilon’ A \epsilon)=?$)
—-deadline: Apr.17
Apr. 3
- Prove that $\hat{\beta}$ and SSE are independent.
- What is R square?
Apr. 10
- Why does the logit model choose the link function
$G(\cdot)=\frac{1}{\exp (-X^T\beta)}$
?
- Why does the logit model choose the link function
Apr. 17
Exercise 3.1, 3.9, 3.14, Page 109 of “Nonparametric and Semiparametric__ Models-An introduction.pdf” ******
—-deadline: May. 8**
Final Exam:
June 26
Grading Policy:
- 20% homework
- 50% final exam
- 30% paperwork
Note:
- Late homework has influence on the grade. The reduced points are in direct proportion to the time delayed.
发表/查看评论